

Basic IPv6

NOG.HR - Tutorial

October 2023

Overview

- Introduction
- IPv6 Address Basics
- Getting it
- IPv6 Protocol Basics
- Addressing Plan
- IPv6 Packets
- Deploying IPv6
- Tips



IPv4?

Section 1

IANA IPv4 Pool

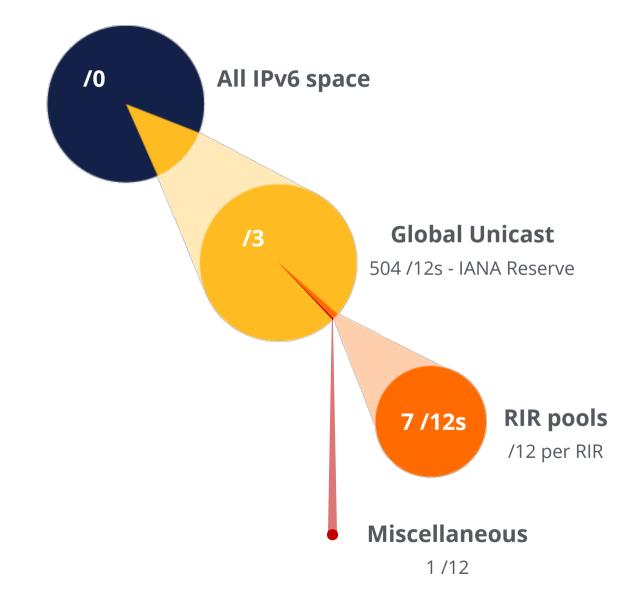
IPv4 run-out

"Today, at 15:35 (UTC+1) on 25 November 2019, we made our final /22 IPv4 allocation from the last remaining addresses in our available pool. We have now run out of IPv4 addresses."

Our Reality: The Waiting List

1. Submit the IPv4 allocation request form at the LIR Portal (/24)

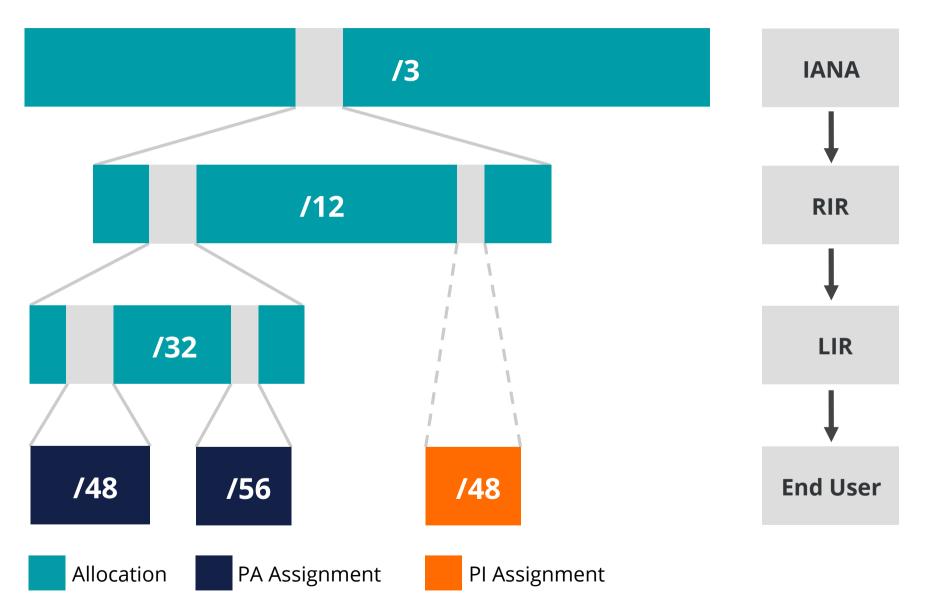
2. Wait



IPv6 Address Basics

Section 2

IP Address Distribution



October 2006	RIR	IPv6 Range
	AFRINIC	2C00:0000::/12
	APNIC	2400:0000::/12
	ARIN	2600:0000::/12
	LACNIC	2800:0000::/12
	RIPE NCC	2A00:0000::/12

June 2019	RIPE NCC 2A10:0000::/12	
November 2019	ARIN	2630:0000::/12

IP Address Distribution

IPv6 Address Basics

- IPv6 address: **128 bits**
 - 32 bits in IPv4
- Every subnet should be a **/64**
- Customer assignments (sites) between:
 - /64 (1 subnet)
 - /48 (65,536 subnets)
- Minimum allocation size /32
 - 65,536 /48s
 - 16,777,216 /56s

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:0db8:003e:ef11:0000:0000:c100:004d

2001:db8:3e:<u>ef11</u>:0:0:c100:4d

1 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0 0 1

IPv6 Subnetting

2001:0db8:0000:0000:0000:0000:0000:0000:00 64 bits interface ID /64 $/60 = 16 \times /64$ /56 = 256 x /64 /52 = 4096 x /64 **/48** = 65536 x /64 $/32 = 65536 \times /48$

Multiple address types

Addresses	Range	Scope
Unspecified	::/128	n/a
Loopback	::1	host
IPv4-Embedded	64:ff9b::/96	n/a
Discard-Only	100::/64	n/a
Link Local	fe80::/10	link
Global Unicast	2000::/3	global
Unique Local	fc00::/7	global
Multicast	ff00::/8	variable

Getting It

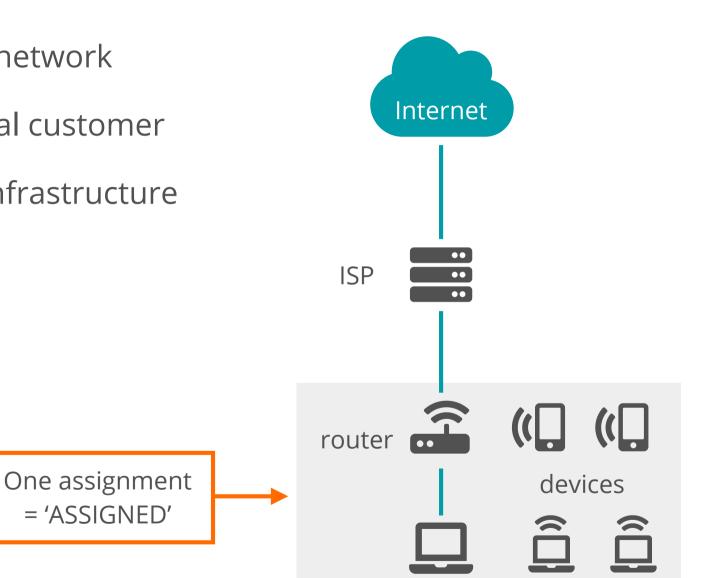
Section 3

Getting an IPv6 allocation

- To qualify, an organisation **must**:
 - Be an LIR
 - Have a plan for making assignments within two years
- Minimum allocation size /32
 - Up to a /29 without additional justification
 - More if justified by customer numbers and network extension
 - Additional bits based on hierarchical and geographical structure, planned longevity and security levels

Customer Assignments

- Give your customers enough addresses
 - Minimum /64
 - Up to /48
- For more than /48 you need to document it well!
- Every assignment **must be registered** in the RIPE Database


Comparison IPv4 and IPv6 status

IPv4		IPv6
ALLOCATED PA	Allocation	ALLOCATED-BY-RIR
	Assignment	ASSIGNED
ASSIGNED PA	Group of Assignments	AGGREGATED-BY-LIR
SUB-ALLOCATED PA	Sub-Allocation	ALLOCATED-BY-LIR
ASSIGNED PI	PI Assignment	ASSIGNED PI

Examples ASSIGNED

- One single network
- An individual customer
- Your own infrastructure

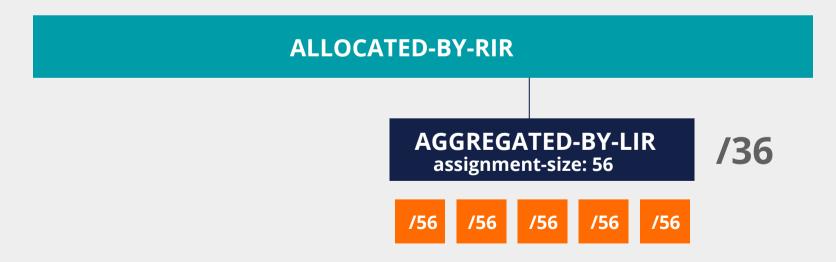
Using ASSIGNED

- Represents one assignment
- Minimum assignment size is a /64

Using ASSIGNED - Example Object

inet6num:	2001:db8:1000::/48
netname:	CUSTOMER-NET
country:	NL
admin-c:	ADM321-RIPE
tech-c:	NOC123-RIPE
status:	ASSIGNED
mnt-by:	LIR-MNT
created:	2015-05-31T08:23:35Z
last-modified:	2015-05-31T08:23:35Z

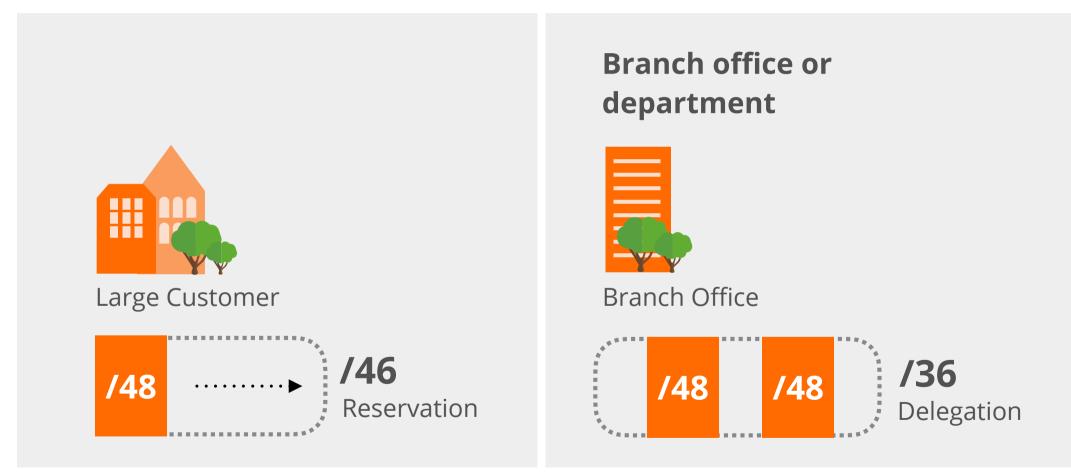
Examples AGGREGATED-BY-LIR


- Group of customers
- Same assignment size

Using AGGREGATED-BY-LIR

- Can be used to group customers
 - For example: Residential broadband customers
- **"assignment-size:"** = assignment of each customer

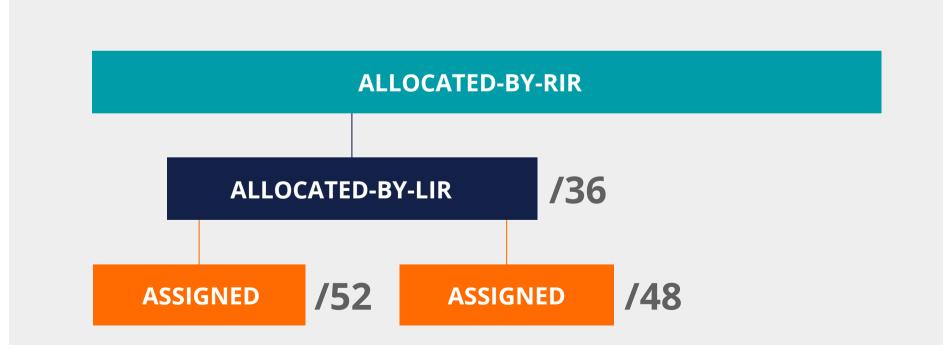
Using AGGREGATED-BY-LIR - Example



inet6num:	2001:db8:1000::/36
netname:	DSL-Broadband-Pool
country:	NL
admin-c:	ADM321-RIPE
tech-c:	NOC123-RIPE
status:	AGGREGATED-BY-LIR
assignment-size:	56
mnt-by:	LIR-MNT
notify:	noc@example.net
created:	2015-05-31T08:23:35Z
last-modified:	2015-05-31T08:23:35Z
source:	RIPE

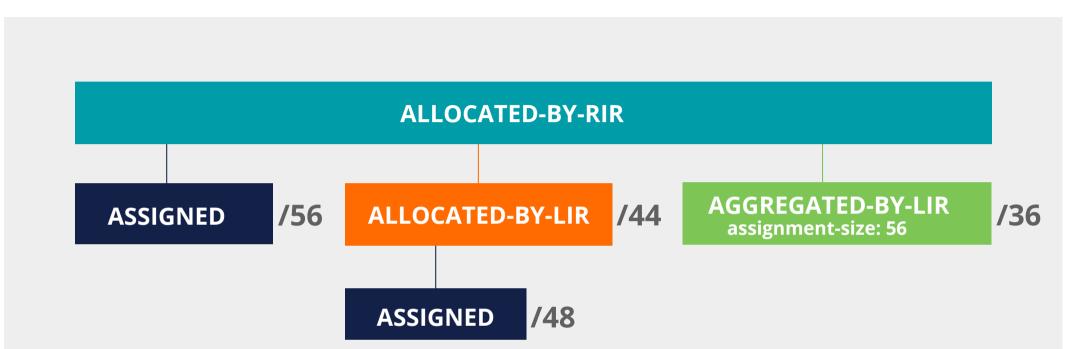
Examples ALLOCATED-BY-LIR

Reservation for a large customer



Using ALLOCATED-BY-LIR

Can be used for customers with **potential for growth**


- Or for your own infrastructure
- Or to delegate address space to a downstream ISP

Using ALLOCATED-BY-LIR - Example

inet6num:	2001:db8:50::/44
netname:	Branch-Office-Network
country:	NL
admin-c:	ADM321-RIPE
tech-c:	NOC123-RIPE
status:	ALLOCATED-BY-LIR
mnt-by:	LIR-MNT
mnt-lower:	BRANCH-OFFICE-MNT
notify:	noc@example.net
created:	2015-05-31T08:23:35Z
last-modified:	2015-05-31T08:23:35Z
source:	RIPE

Overview

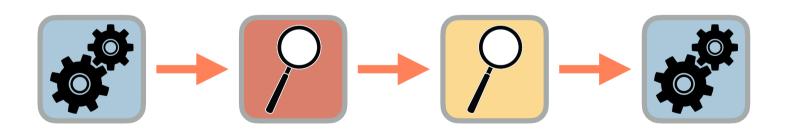
Getting IPv6 PI Address Space

- To qualify, an organisation must:
 - **Meet** the contractual **requirements** for provider independent resources
 - LIRs must demonstrate special **routing requirements**
- Minimum assignment size: **/48**
- PI space **cannot** be used for sub-assignments

IPv6 Protocol Basics

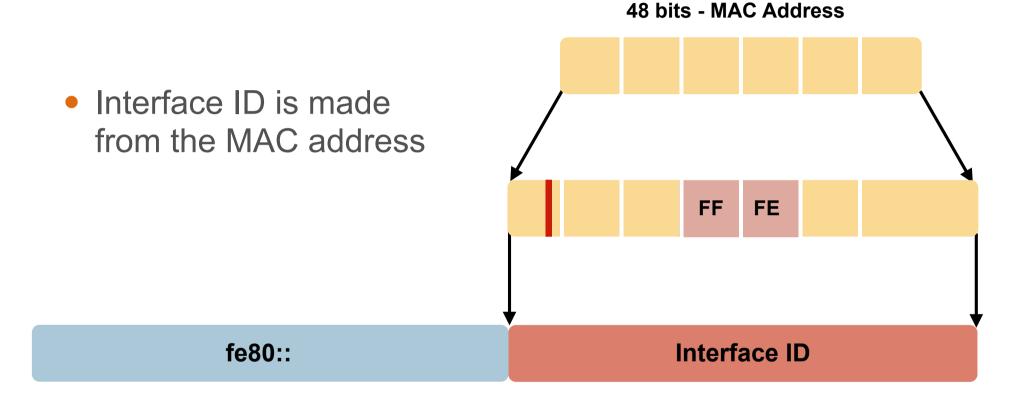
Section 4

IPv6 Protocol Functions



- Address Autoconfiguration
 - Supported by Neighbor Discovery
 - Stateless with SLAAC
 - Stateful with DHCPv6
- Neighbor Discovery Protocol
 - Replaces ARP from IPv4
 - Uses ICMPv6 and Multicast
 - Finds the other IPv6 devices on the link
 - Keeps track of reachability

The Autoconfiguration Process



- 1. Make a Link-Local address
- 2. Check for duplicates on the link
- 3. Search for a router
- 4. Make a Global Unicast address

Making a Link-Local Address

• fe80:: + Interface ID = Link-Local address for the host

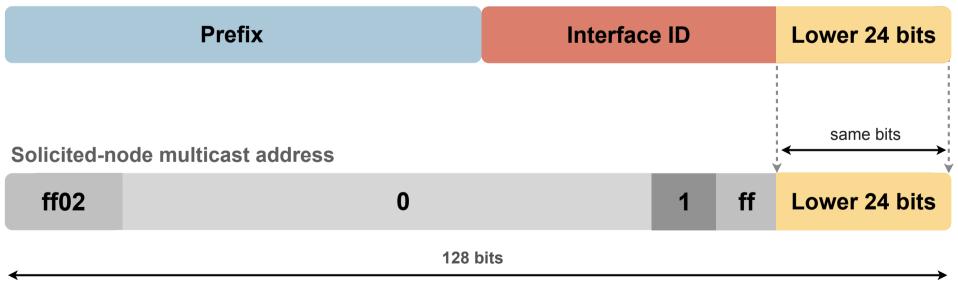
Checking for Duplicates

Neighbor Solicitation

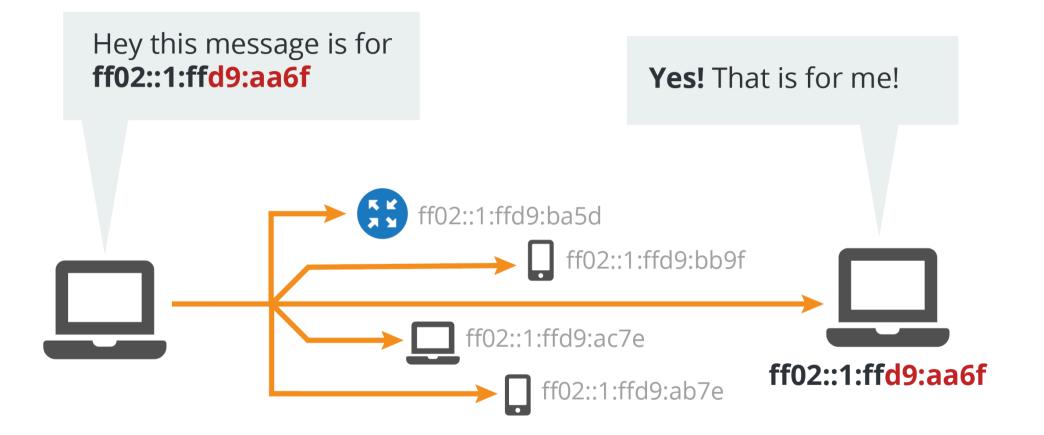
Hello! Is this IPv6 address in use? Can you tell me your MAC address?

Neighbor Advertisement

Hello! Yes, I'm using that IPv6 address. My MAC address is 72:D6:0C:2F:FC:01


If nobody replies to the Neighbor Solicitation, the host uses the generated link-local address

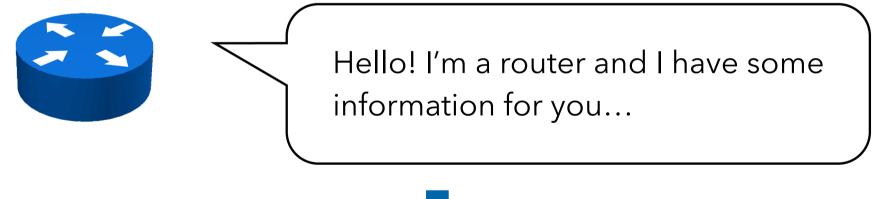
Solicited Node Multicast Address


 Used in Neighbor Discovery Protocol for obtaining the layer 2 link-layer (MAC) addresses

IPv6 unicast address

Solicited Node Multicast Address

Searching for Routers



Router Solicitation

Hello! Is there a router out there?

Router Advertisement

The Router Advertisement gives the host more information to get an IPv6 address and set up a connection

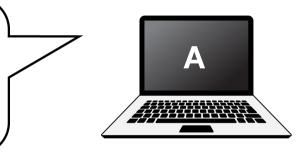
Stateless Address Auto-Configuration

• The Router Advertisement message tells the host:

- Router's address
- Zero or more link prefixes
- SLAAC allowed (yes/no)
- DHCPv6 options
- MTU size (optional)

Link Prefix	Interface ID			
Global Unicast IPv6 Address				

Interfaces will have multiple addresses


- Unicast
 - Link Local fe80::5a55:caff:fef6:bdbf/64
 - Global Unicast 2001::5a55:caff:fef6:bdbf/64 (multiple)
- Multicast
 - All Nodes ff02::1 (scope: link)
 - Solicited Node ff02::1:fff6:bdbf (scope: link)
- Routers
 - All Routers ff02::2 (scope: link)

Verifying Reachability

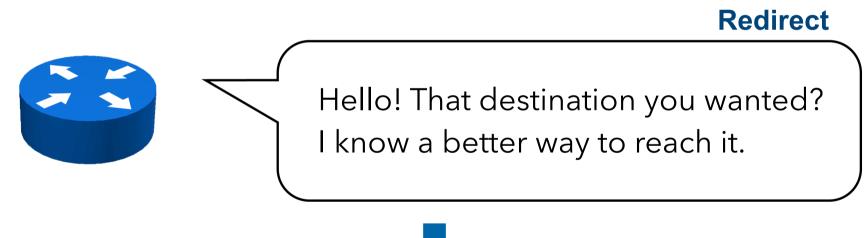
Neighbor Solicitation

Hello! Are you still out there? Is your MAC address still valid?

Neighbor Advertisement

Hello! Yes, I'm still online.

My MAC address is 72:D6:0C:2F:FC:01


If the target does not reply to the Neighbor Solicitation, the sender removes the MAC address from the cache

Redirects IPv6 Packet

Hosts can be redirected to a better first-hop router

This packet is for an IPv6 host.

• They can also be informed that the destination is a neighbor on the link

Addressing Plans

Section 5

Why Create an Addressing Plan?

- Benefits of an IPv6 addressing plan
 - Mental health during implementation (!)
 - Easier implementation of security policies
 - Efficient addressing plans are scalable
 - More efficient route aggregation

IPv6 Address Management

- Your spreadsheet might not scale
 - There are 65.536 /64s in a /48
 - There are 65.536 /48s in a /32
 - There are 524.288 /48s in a /29
 - There are **16.777.216** /56s in a /32
 - There are 134.217.728 /56s in a /29
- Find a suitable IPAM solution

Addressing plans

- /64 for each subnet
- Number of hosts in a /64 is irrelevant
- Multiple /48s per pop can be used
 - separate blocks for infrastructure and customers
 - document address needs for allocation criteria
- Use one /64 block per site for loopbacks

The /64 story

- "Every interface ID must be a /64" (RFC 4291)
- Because of SLAAC
- Other RFCs followed this

• The **only** exception is a /127 for point-to-point links

IPv6 Packets

Section 6

IPv6 Header Format

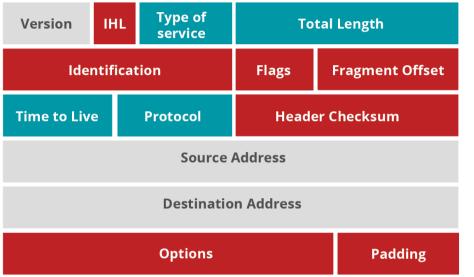
- Fixed length
 - Optional headers are daisy-chained

 IPv6 header is twice as long (40 bytes) as IPv4 header without options (20 bytes)

IPv6 Header

Field's name kept from IPv4 to IPv6

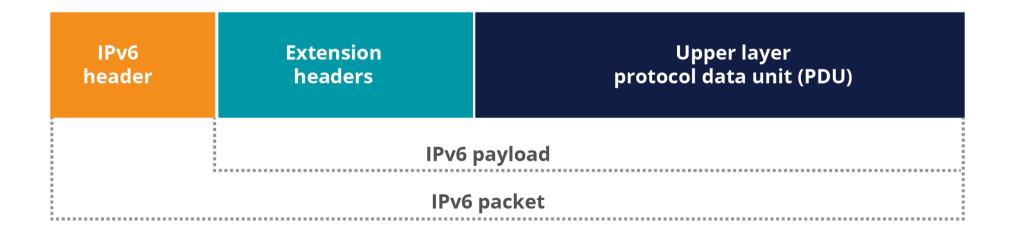
Name and position changed in IPv6


Field not kept in IPv6

New field in IPv6

LEGEND

IPv4 Header


IPv6 Header

	Version	Traffic Class	Flow Label		
t	Payload Length		Next Header	Hop Limit	
	Source Address				
		Destinati	on Address		

IPv6 Header

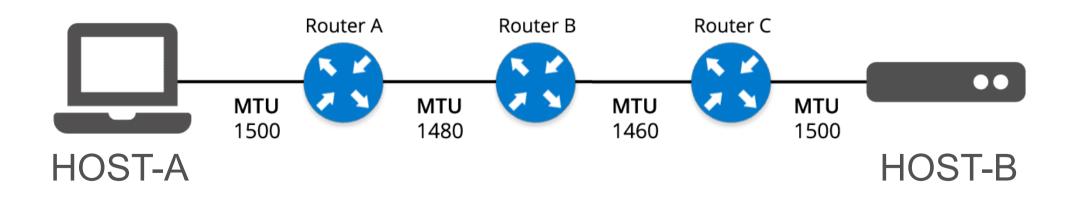
• Optional fields go into extension headers

IPv6 Header

• Daisy-chained after the main header

IPv6 header Next Header: TCP	TCP Header	Data		
IPv6 header Next Header: Routing	Routing header Next Header: TCP	TCP Header	Data	
IPv6 header Next Header: Routing	Routing header Next Header: Fragment	Fragment header Next Header: TCP	TCP Header	Data

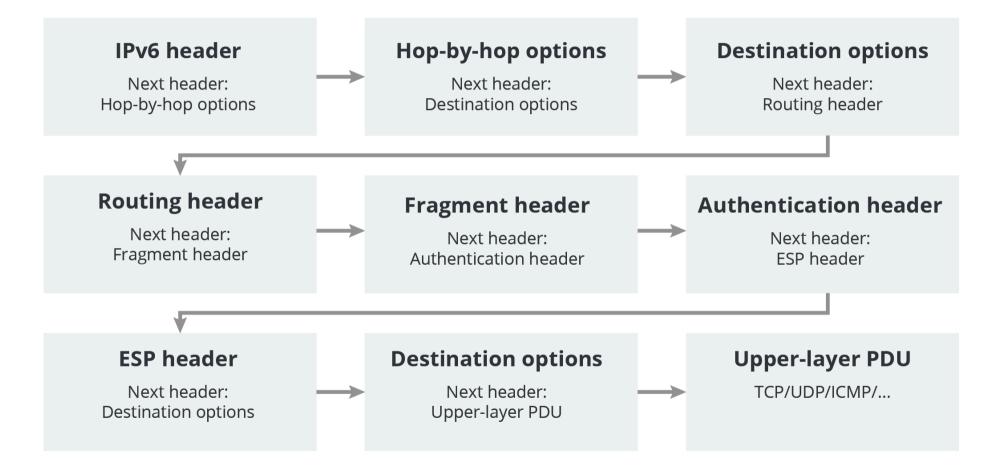
Fragmentation


- Routers don't fragment packets with IPv6
 - More efficient handling of packets in the core
 - Fragmentation is being done by host

- If a packet is too big for next hop:
 - "Packet too big" error message
 - This is an ICMPv6 message
 - Filtering ICMPv6 causes problems

Path MTU Discovery

- A sender who gets this "message-too-big" ICMPv6 error tries again with a smaller packet
 - A hint of size is in the error message
 - This is called Path MTU Discovery


Ordering of Headers

- Order is important:
 - Only hop-by-hop header has to be processed by every node
 - Routing header needs to be processed by every router
 - Fragmentation has to be processed before others at the destination

Ordering of Headers

Broadcast

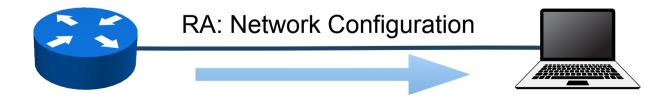
- IPv6 has no broadcast
- There is an "all nodes" multicast group
 - ff02::1

- Disadvantages of broadcast:
 - It wakes up all nodes
 - Only a few devices are involved
 - Can create broadcast storms

Deploying IPv6

Section 7

Assigning Addresses


- Routers influence how hosts connect to network
- Several options:
 - Manual configuration
 - Router Advertisement only (SLAAC)
 - RA + DHCPv6 ('M' flag on)
 - RA + DHCPv6 ('O' flag on)
 - RA ('A' flag off) + DHCPv6 ('M' flag on)

• Gateway is always provided by the RA

Router Advertisement Options

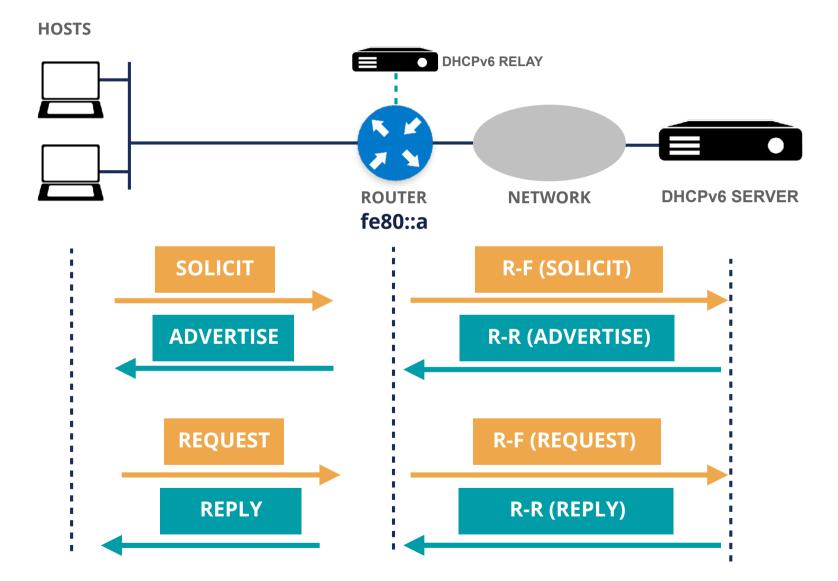
- RA message is used to provide configuration info
 - Default gateway address
 - Which prefix(es) to use on the link? Prefix length?
 - Is SLAAC allowed?
 - Is DHCPv6 available? For address/options? Only options?
 - What is the preference of a router on the link?
 - DNS servers / Domain (optional)
 - MTU size (optional)

SLAAC IID Generation Options

64 bits

Interface ID (IID)

Н	Modified EUI-64 (uses MAC address)	"Stable" IID	
Н	- Stable, semantically opaque [<i>RFC7217</i>]	for SLAAC	
Ц	Temporary Address Extensions [RFC8981]	"Temporary"	


DHCPv6

- Used to give additional information like DNS servers or to manage the address pool
- Router Advertisement message contains hints
 - If "managed" flag = '1' \Rightarrow can use DHCPv6 to get an address
 - Optionally provide the address of a DNS server (RFC 8106)
- Using additional flags, the network admin can disable
 SLAAC and force DHCPv6

DHCPv6 (M=0, O=1)

HOSTS O DHCPv6 RELAY ROUTER **NETWORK DHCPv6 SERVER** fe80::a **INFORMATION-REQUEST R-F(INFORMATION-REQUEST) R-R (REPLY)** REPLY

DNS in IPv6 is difficult?

- **DNS** is not IP layer dependent
- A record for IPv4
- AAAA record for IPv6

- Don't answer based on incoming protocol
- Only challenges are for translations
 - NAT64, proxies

Tips

Section 8

How to get started

- Change purchasing procedure (feature parity)
- Check your current hardware and software
- Plan every step and test
- One service at a time
 - face first
 - core
 - customers

RIPE-772 Document

- "Requirements for IPv6 in ICT Equipment"
 - Best Current Practice describing what to ask for when requesting IPv6 Support
 - Useful for tenders and RFPs
 - Original version was ripe-554
 - Ripe-554 Originated by the Slovenian Government
 - Adopted by various others (Germany, Sweden)

Link to the document:

https://www.ripe.net/publications/docs/ripe-772

Troubleshooting for ISP Helpdesks

- Most ISP connectivity problems are not IPv6 related
- Helpdesks can get confused!
 - IPv6 is new for them
 - They don't have experience with IPv6 issues

- A generic troubleshooting guide can help!
- Based on the open source testipv6.com tool
- Customisable

https://www.ripe.net/ripe/docs/ripe-631

Customers And Their /48

- Customers have no idea how to handle **65,536 subnets**!
- Provide them with information!

Link to the document:

https://www.ripe.net/support/training/material/

basicipv6-addressing-plan-howto.pdf

Don'ts

- Don't separate IPv6 features from IPv4
- Don't do everything in one go
- Don't appoint an IPv6 specialist
 - do you have an IPv4 specialist?
- Don't see IPv6 as a product
 - the Internet is the product!

Learn something new today! academy.ripe.net

RIPE NCC Certified Professionals

https://getcertified.ripe.net/

Questions

Ënn	Соңы	An Críoch	پايان	Y Diwe	dd
Vége	Endir	Finvezh	վերջ	Ende	Koniec
Son	დასასრულ Amaia	ר הסוף	Tmiem	Кінець	Finis
Lõpp	Sfârşit	Loppu	Slutt	Liðugt –	Крај
Kraj	لنهاية	Конец	Ļ		Ind
Fine	Fin Ei	nde Fí	Край	Konec	Τέλος abaiga
S Fim	Slut			Pa	C
					igas