

# **IPv6 Security**

NOG.HR - Tutorial

October 2023

### **Overview**



- IPv6 Security vs IPv4 Security
- Reachability of IPv6 Addresses
- Network Scanning in IPv6
- Attacks on IPv6
- IPv6 vs IPv4
- IPv6 Support
- IPv4-Only Networks
- IPv6 Security Resources

## **IPv6 Security Statements**



 1
 2
 3
 4
 5
 6
 7
 8

- IPv6 is more secure than IPv4
- IPv6 has better security and it's built in

#### Reason:

• RFC 4294 - IPv6 Node Requirements: IPsec MUST

### Reality:

- RFC 8504 IPv6 Node Requirements: IPsec SHOULD
- IPsec available. Used for security in IPv6 protocols

## Reality



### A change of mindset is necessary

- IPv6 is not more or less secure than IPv4
- Knowledge of the protocol is the best security measure





| 1 | Best security tool is knowledge                                                   |
|---|-----------------------------------------------------------------------------------|
| 2 | IPv6 security is a moving target                                                  |
| 3 | IPv6 is happening: need to know about IPv6 security                               |
| 4 | Cybersecurity challenge: Scalability IPv6 is also responsible for Internet growth |

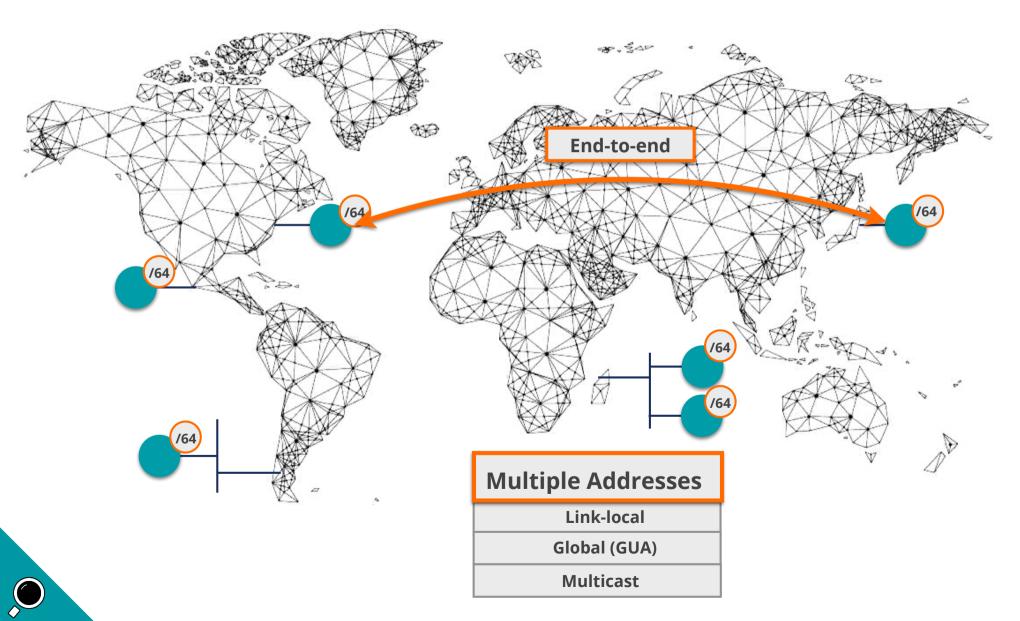
### **IPv6 Security Statements**



1 **2** 3 4 5 6 7 8

- IPv6 has no NAT. Global addresses used
- I'm exposed to attacks from Internet

### Reason:


End-2-End paradigm. Global addresses. No NAT

### Reality:

- Global addressing does not imply global reachability
- You are responsible for reachability (filtering)



#### 340,282,366,920,938,463,463,374,607,431,768,211,456



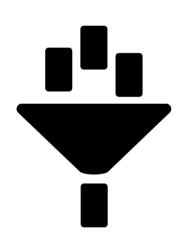
## **Special / Reserved IPv6 Addresses**



| Name                          | IPv6 Address        | Comments                                         |
|-------------------------------|---------------------|--------------------------------------------------|
| Unspecified                   | ::/128              | When no address available                        |
| Loopback                      | ::1/128             | For local communications                         |
| IPv4-mapped                   | ::ffff:0:0/96       | For dual-stack sockets. Add IPv4 address 32 bits |
| Documentation                 | 2001:db8::/32       | RFC 3849                                         |
| IPv4/IPv6 Translators         | 64:ff9b::/96        | RFC 6052                                         |
| Discard-Only Address<br>Block | 100::/64            | RFC 6666                                         |
| Teredo                        | 2001::/32           | IPv6 in IPv4 Encapsulation Transition Mechanism  |
| 6to4                          | 2002::/16           | IPv6 in IPv4 Encapsulation Transition Mechanism  |
| ORCHID                        | 2001:10::/28        | Deprecated RFC 5156                              |
| Benchmarking                  | 2001:2::/48         | RFC 5180                                         |
| Link-local                    | fe80::/10           | RFC 4291                                         |
| Unique-local                  | fc00::/7            | RFC 4193                                         |
| 6Bone                         | 3ffe::/16, 5f00::/8 | Deprecated RFC 3701                              |
| IPv4-compatible               | ::/96               | Deprecated RFC 5156                              |



## **Security Tips**




- Use hard to guess IIDs
  - RFC 7217 better than Modified EUI-64
  - RFC 8064 establishes RFC 7217 as the default
- Use IPS/IDS to detect scanning
- Filter packets where appropriate
- Be careful with routing protocols
- Use "default" /64 size IPv6 subnet prefix



# Filtering in IPv6 is very Important!

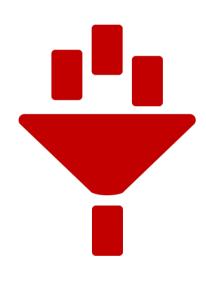




- Global Unicast Addresses
- A good addressing plan



**Easier** filtering!


### **New Filters to Take Into Account**





- ICMPv6
- IPv6 Extension Headers
- Fragments Filtering
- Transition mechanisms (TMs) / Dual-Stack





### FILTER ICMPv6 CAREFULLY!

**Used in many IPv6 related protocols** 



# **ICMPv6 Error Messages**



| Туре                                        | Code                                                           |  |  |  |
|---------------------------------------------|----------------------------------------------------------------|--|--|--|
|                                             | No route to destination (0)                                    |  |  |  |
|                                             | Communication with destination administratively prohibited (1) |  |  |  |
|                                             | Beyond scope of source address (2)                             |  |  |  |
| Destination Ureachable (1)                  | Address Unreachable (3)                                        |  |  |  |
|                                             | Port Unreachable (4)                                           |  |  |  |
|                                             | Source address failed ingress/egress policy (5)                |  |  |  |
|                                             | Reject route to destination (6)                                |  |  |  |
|                                             | Error in Source Routing Header (7)                             |  |  |  |
| Packet Too Big (2) Parameter = next hop MTU | Packet Too Big (0)                                             |  |  |  |
| Time Exceeded (3)                           | Hop Limit Exceeded in Transit (0)                              |  |  |  |
| Tillie Exceeded (5)                         | Fragment Reassembly Time Exceeded (1)                          |  |  |  |
|                                             | Erroneous Header Field Encountered (0)                         |  |  |  |
| Parameter Problem (4)                       | Unrecognized Next Header Type (1)                              |  |  |  |
| Parameter = offset to error                 | Unrecognized IPv6 Option (2)                                   |  |  |  |
|                                             | IPv6 First Fragment has incomplete IPv6 Header Chain (3)       |  |  |  |



# Filtering ICMPv6



| Type - Code            | Description             | Action                                          |
|------------------------|-------------------------|-------------------------------------------------|
| Type 1 - all           | Destination Unreachable | ALLOW                                           |
| Type 2                 | Packet Too Big          | ALLOW                                           |
| Type 3 - Code 0        | Time Exceeded           | ALLOW                                           |
| Type 4 - Code 0, 1 & 2 | Parameter Problem       | ALLOW                                           |
| Type 128               | Echo Reply              | ALLOW for troubleshoot and services. Rate limit |
| Type 129               | Echo Request            | ALLOW for troubleshoot and services. Rate limit |
| Types 131,132,133, 143 | MLD                     | ALLOW if Multicast or MLD goes through FW       |
| Type 133               | Router Solicitation     | ALLOW if NDP goes through FW                    |
| Type 134               | Router Advertisement    | ALLOW if NDP goes through FW                    |
| Type 135               | Neighbour Solicitation  | ALLOW if NDP goes through FW                    |
| Type 136               | Neighbour Advertisement | ALLOW if NDP goes through FW                    |
| Type 137               | Redirect                | NOT ALLOW by default                            |
| Type 138               | Router Renumbering      | NOT ALLOW                                       |

More on RFC 4890 - https://tools.ietf.org/html/rfc4890



## Filtering Extension Headers





- Firewalls should be able to:
  - 1. Recognise and filter some **EHs** (example: **RH0**)
  - 2. Follow the chain of headers
  - 3. Not allow **forbidden combinations** of headers



## **Filtering Fragments**



Upper layer info not in 1st fragment

Creates many tiny fragments to go through filtering / detection

Fragments inside fragments

**Several fragment headers** 

Fragmentation inside a tunnel

**External header hides fragmentation** 



## **Filtering Fragments**



Upper layer info not in 1st Fragment

All header chain should be in the 1st fragment [RFC7112]

Fragments inside fragments

Should not happen in IPv6. Filter them

Fragmentation inside a tunnel

FW / IPS / IDS should support inspection of encapsulated traffic



## Filtering TMs / Dual-stack



| Technology             | Filtering Rules                                           |
|------------------------|-----------------------------------------------------------|
| Native IPv6            | EtherType 0x86DD                                          |
| 6in4                   | IP proto 41                                               |
| 6in4 (GRE)             | IP proto 47                                               |
| 6in4 (6-UDP-4)         | IP proto 17 + IPv6                                        |
| 6to4                   | IP proto 41                                               |
| 6RD                    | IP proto 41                                               |
| ISATAP                 | IP proto 41                                               |
| Teredo                 | UDP Dest Port 3544                                        |
| Tunnel Broker with TSP | (IP proto 41)    (UDP dst port 3653    TCP dst port 3653) |
| AYIYA                  | UDP dest port 5072    TCP dest port 5072                  |

More on RFC 7123 - https://tools.ietf.org/html/rfc7123

#### **IANA Protocol Numbers -**

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml



### **IPv6 Packet Filtering**



**Much more important in IPv6** 



**Common IPv4 Practices** 



**New IPv6 Considerations** 

End to End needs filtering

ICMPv6 should be wisely filtered

Filtering adapted to IPv6: EHs, TMs

### **IPv6 Security Statements**





### Reason:

- Common LAN/VLAN use /64 network prefix
- 18,446,744,073,709,551,616 hosts

### **Reality**:

- Brute force scanning is not possible [RFC5157]
- New scanning techniques

## **IPv6 Network Scanning**



64 bits 64 bits

#### **Network Prefix**

### **Interface ID (IID)**

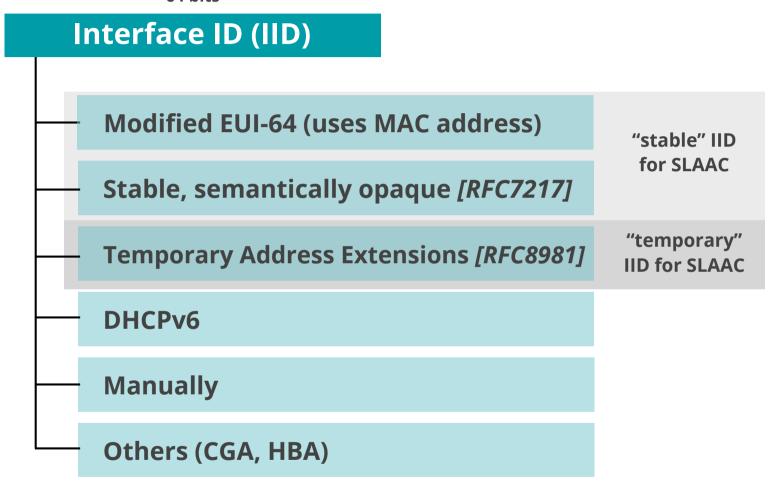
#### **Network Prefix determination (64 bits)**

Common patterns in addressing plans

DNS direct and reverse resolution

**Traceroute** 

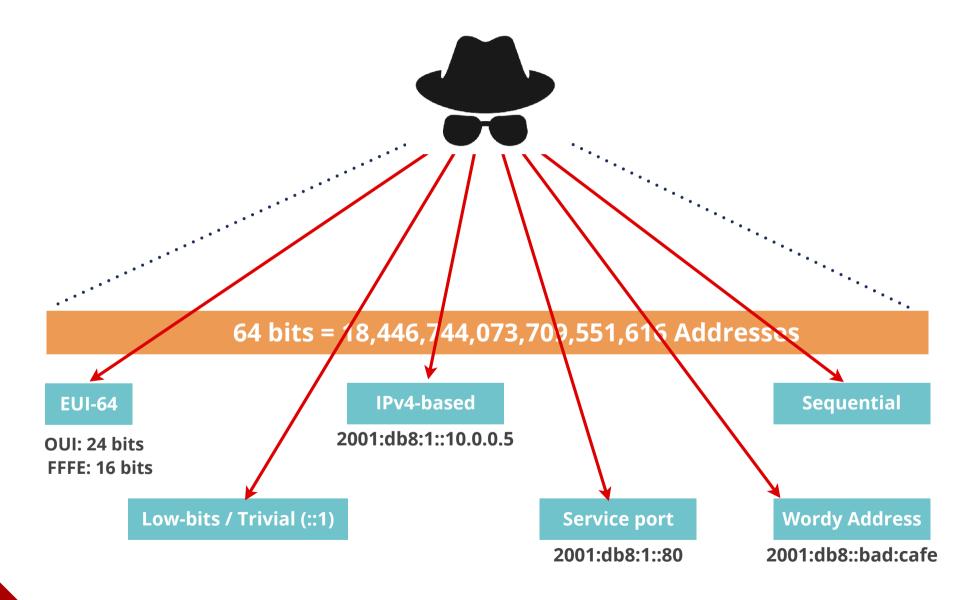
#### **Interface ID determination (64 bits)**


"brute force" no longer possible



## **IID Generation Options**

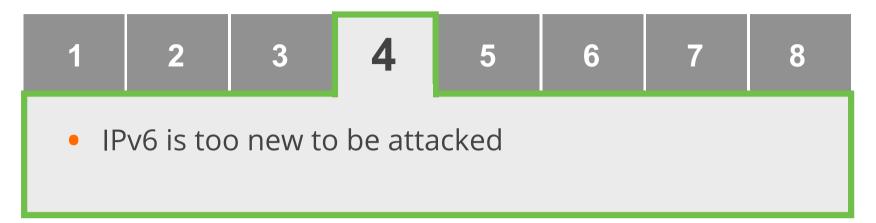



64 bits





## **Guessing IIDs**








### **IPv6 Security Statements**





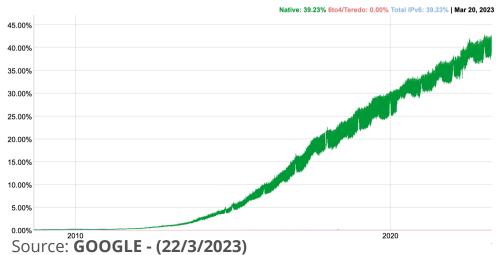
### Reason:

Lack of knowledge about IPv6 (it's happening!)

### Reality:

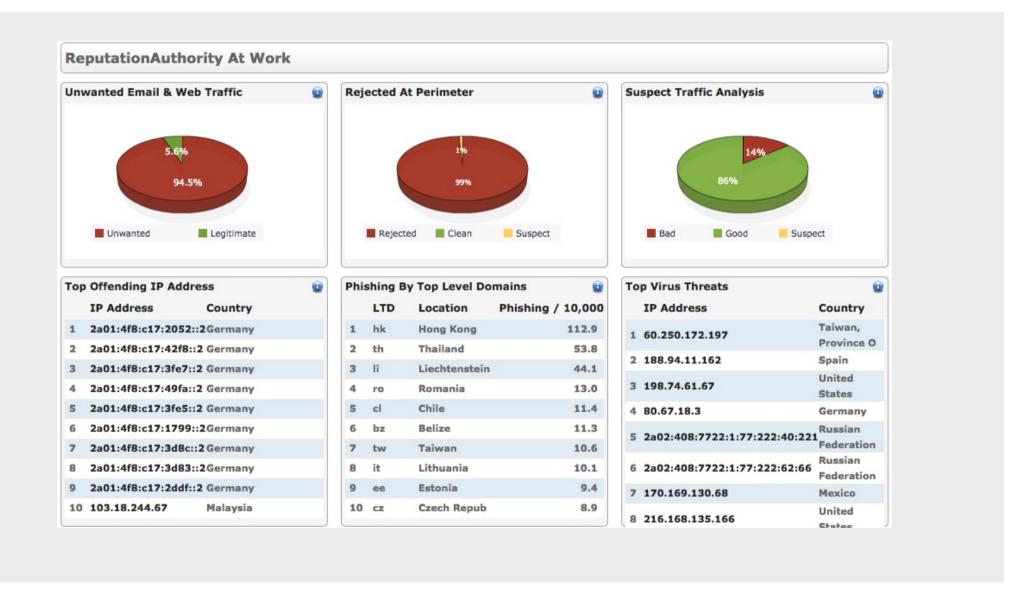
- There are tools, threats, attacks, security patches, etc.
- You have to be prepared for IPv6 attacks

## IPv6 is Happening...



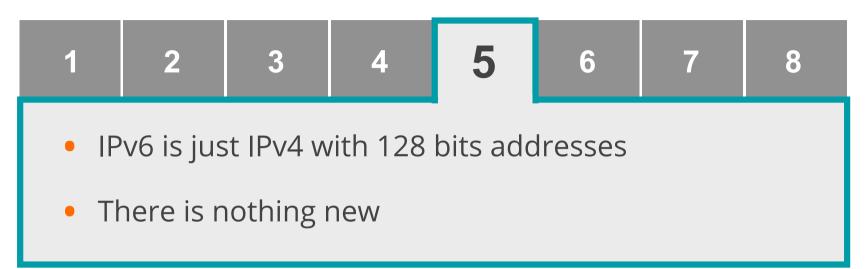

| → RANK | IPV6% | COUNTRY / REGION |
|--------|-------|------------------|
| 1      | 100%  | Bahrain          |
| 2      | 55.7% | Montserrat       |
| 3      | 55.7% | Saudi Arabia     |
| 4      | 54.9% | India            |
| 5      | 53.9% | Uruguay          |
| 6      | 53%   | France           |
| 7      | 53%   | Malaysia         |
| 8      | 52.1% | Germany          |
| 9      | 50.7% | Greece           |
| 10     | 50.4% | United States    |
| 11     | 50.1% | Puerto Rico      |
| 12     | 50%   | Viet Nam         |
| 13     | 48.6% | Belgium          |
| 14     | 46.4% | Japan            |

Source: AKAMAI - (22/3/2023)


| Show 10 ✓ entries |                                | Search:                                                                                                                                                                                                             |                    |  |
|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|
| Rank 🔺            | Participating Network          | \$ ASN(s) \$                                                                                                                                                                                                        | IPv6<br>deployment |  |
| 1                 | RELIANCE JIO INFOCOMM LTD      | 55836, 64049                                                                                                                                                                                                        | 92.58%             |  |
| 2                 | Comcast                        | 7015, 7016, 7725, 7922, 11025, 13367, 13385, 20214, 21508, 22258, 22909, 33287, 33489, 33490, 33491, 33650, 33651, 33652, 33653, 33654, 33655, 33666, 33661, 33662, 33664, 33665, 33666, 33667, 33668, 36732, 36733 | 73.62%             |  |
| 3                 | Combined US Mobile Carriers    | 3651, 6167, 10507, 20057, 21928,<br>22394                                                                                                                                                                           | 87.74%             |  |
| 4                 | Charter Communications         | 7843, 10796, 11351, 11426, 11427, 12271, 20001, 20115, 33363                                                                                                                                                        | 56.41%             |  |
| 5                 | ATT                            | 6389, 7018, 7132                                                                                                                                                                                                    | 72.32%             |  |
| 6                 | T-Mobile USA                   | 21928                                                                                                                                                                                                               | 92.31%             |  |
| 7                 | Deutsche Telekom AG            | 3320                                                                                                                                                                                                                | 74.48%             |  |
| 8                 | Orange Business Services       | 3215                                                                                                                                                                                                                | 74.08%             |  |
| 9                 | <u>Verizon Wireless</u>        | 6167, 22394                                                                                                                                                                                                         | 83.58%             |  |
| 10                | Claro Brasil                   | 4230, 28573                                                                                                                                                                                                         | 74.53%             |  |
|                   | Showing 1 to 10 of 345 entries | First Previous 1 2 3 4 5                                                                                                                                                                                            | Next Last          |  |

Source: WORLD IPv6 LAUNCH - (22/3/2023)










### **IPv6 Security Statements**





### Reason:

Routing and switching work the same way

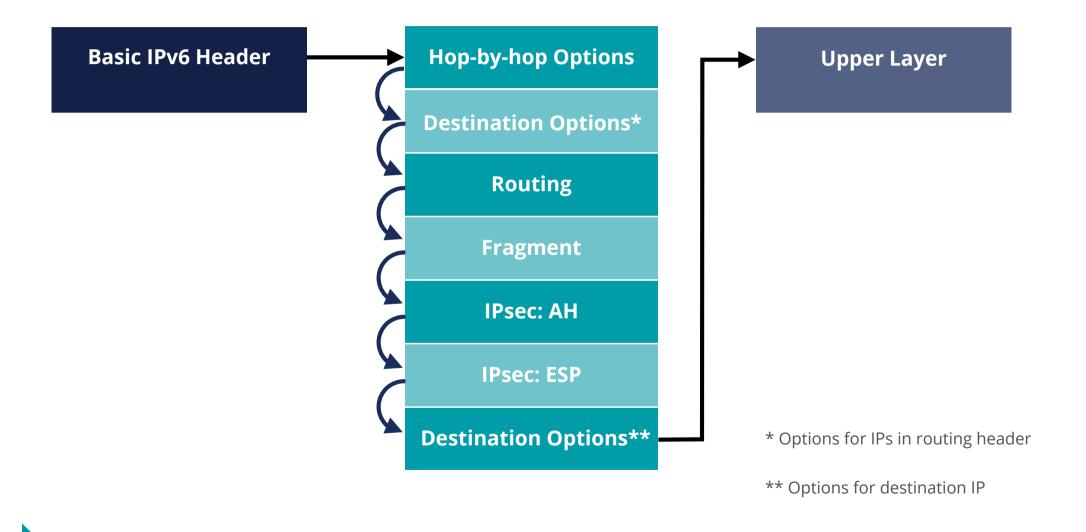
### Reality:

- Whole new addressing architecture
- Many associated new protocols

### IPv6 vs IPv4



- IPv6 quite similar to IPv4, many reusable practices
- IPv6 security compared with IPv4:


No changes with IPv6

**Changes with IPv6** 

**New IPv6 issues** 

### **IPv6 Extension Headers**









Flexibility means complexity

 Security devices / software must process the full chain of headers

Firewalls must be able to filter based on
 Extension Headers



## **Routing Header**



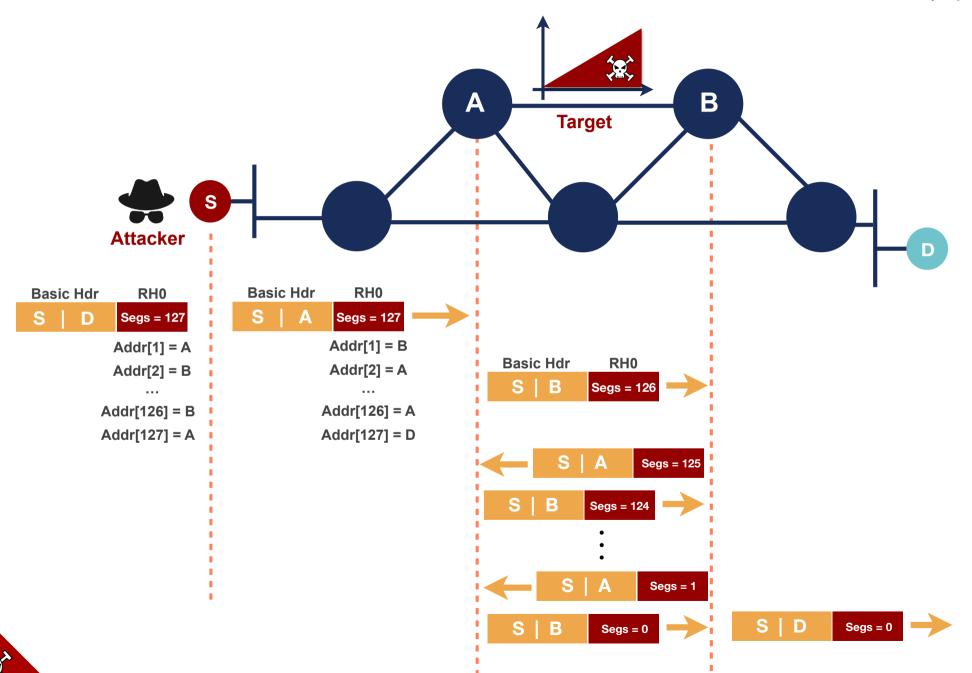
Includes one or more IPs that should be "visited" in the path

- Processed by the **visited routers** 

| 8 bits                                    | 8 bits | 8 bits       | 8 bits        |  |  |
|-------------------------------------------|--------|--------------|---------------|--|--|
| Next Header                               | Length | Routing Type | Segments Left |  |  |
| Specific data of that Routing Header type |        |              |               |  |  |



## **Routing Header Threat**




- Routing Header (Type 0):
  - RH0 can be used for traffic amplification over a remote path
- RH0 Deprecated [RFC5095]
  - RH1 deprecated. RH2 (MIPv6), RH3 (RPL) and RH4 (SRH) are valid









### **Extension Headers Solutions**





Require security tools to inspect Header Chain properly



## **Fragment Header**



- Used by IPv6 source node to send a packet bigger than path MTU
- **Destination host** processes fragment headers

| 8 bits         | 8 bits   | 13 bits         | 2 bits | 1 bit |  |
|----------------|----------|-----------------|--------|-------|--|
| Next Header    | Reserved | Fragment Offset | Res    | M     |  |
| Identification |          |                 |        |       |  |
| 32 bits        |          |                 |        |       |  |

#### M Flag:

1 = more fragments to come;

0 = last fragment



### **EH Threats: Fragmentation**

**Fragments** 

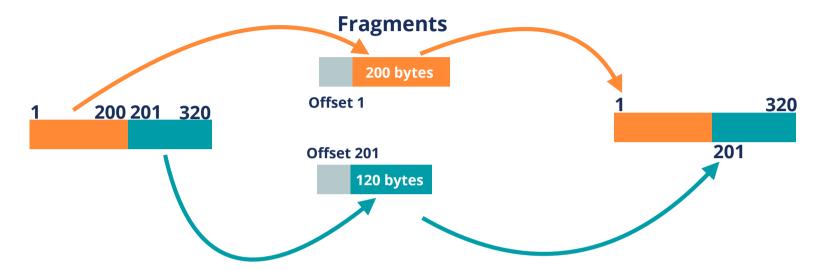


Overlapping Fragments

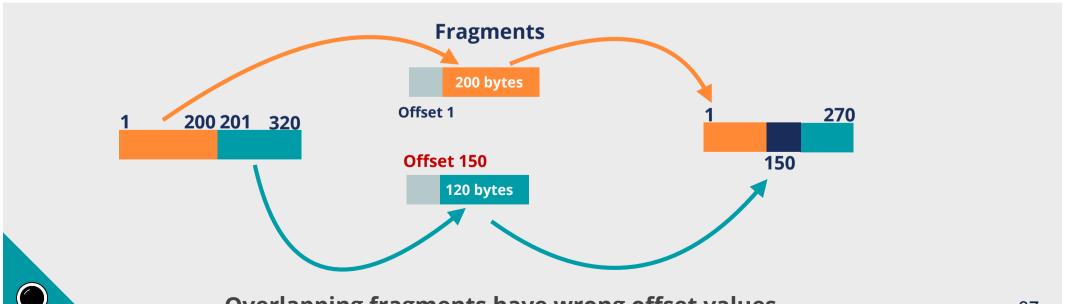
Not Sending Last Fragment

"Atomic"

Fragments that overlap because of wrong "fragment offset"


Waiting for last fragment Resource consumption

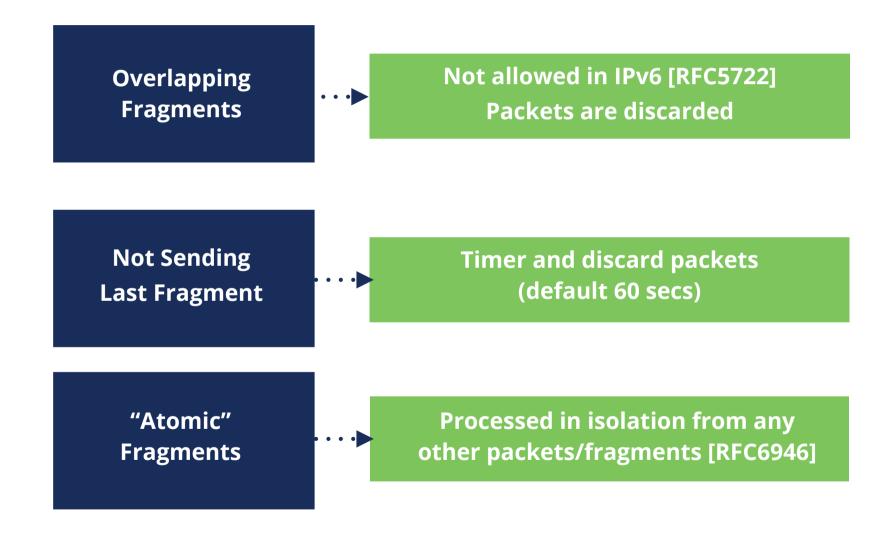
fragment (Frag. Offset and M = 0)




# **Overlapping Fragments**






Normal fragments offset say where the data goes





### **EH Solutions: Fragmentation**







# **Bypassing RA Filtering/RA-Guard**



Using any Extension Header

| Basic IPv6 Header | <b>Destination Options</b> | ICMPv6: RA |
|-------------------|----------------------------|------------|
| Next Header = 60  | Next Header = 58           |            |

If it only looks at Next Header = 60, it does not detect the RA

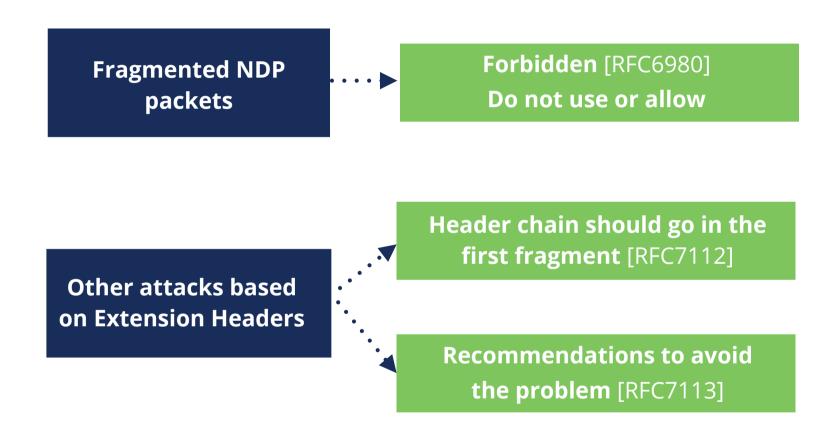


# **Bypassing RA Filtering/RA-Guard**



### Using **Fragment** Extension Header

| Basic IPv6 Header | Fragment         | Destination Options |
|-------------------|------------------|---------------------|
| Next Header = 44  | Next Header = 60 | Next Header = 58    |


| Basic IPv6 Header | Fragment         | Destination Options | ICMPv6: RA |
|-------------------|------------------|---------------------|------------|
| Next Header = 44  | Next Header = 60 | Next Header = 58    |            |

Needs all fragments to detect the RA



### **Extension Headers Solutions**





• **Require** security tools to inspect Header Chain properly



### **NDP Features**



**Hop Limit = 255** 



if not then discard

### NDP has vulnerabilities

[RFC3756] [RFC6583]

### **Specification says to use IPsec**



impractical, it's not used

SEND [RFC3971]

(SEcure Neighbour Discovery)



Not widely available



### **NDP Threats**



- Neighbor Solicitation/Advertisement Spoofing
- Can be done sending:
  - NS with "source link-layer" option changed
  - 2. **NA** with "target link-layer" option changed
    - Can send unsolicited NA or as an answer to NS

- Redirection/DoS attack
- Could be used for a "Man-In-The-Middle" attack





## **IPv6 Security Statements**



1 2 3 4 5 6 7 8

• IPv6 support is a yes/no question

#### Reason:

- Question: "Does it support IPv6?"
- Answer: "Yes, it supports IPv6"

### **Reality**:

- IPv6 support is not a yes/no question
- Features missing, immature implementations, interoperability issues

# **Devices Categories (RIPE-772)**



Host

**IPSec** (if needed)

**RH0** [RFC5095]

Overlapping Frags [RFC5722]

Atomic Fragments [RFC6946]

NDP Fragmentation [RFC6980]

Header chain [RFC7112]

Stable IIDs [RFC8064][RFC7217] [RFC7136]

Temp. Address
Extensions
[RFC8981]

Disable if not used: LLMNR, mDNS, DNS-SD, transition mechanisms **Switch** 

**HOST+** 

**IPv6 ACLs** 

**FHS** 

**RA-Guard** [*RFC6105*]

**DHCPv6** guard

**IPv6** snooping

IPv6 source / prefix guard

IPv6 destination guard

MLD snooping [RFC4541]

**DHCPv6-Shield** [RFC7610]

Router

**HOST+** 

Ingress Filtering and RPF

DHCPv6 Relay [RFC8213]

OSPFv3

**Auth.** [RFC4552]

or / and [RFC7166]

IS-IS

[RFC5310]

or, less preferred, [RFC5304]

**MBGP** 

**TCP-AO** [RFC5925]

MD5 Signature Option [RFC2385] Obsoleted

MBGP Bogon prefix filtering

Security Equipment

**HOST+** 

Header chain [RFC7112]

Support EHs Inspection

ICMPv6 fine grained filtering

**Encapsulated Traffic Inspection** 

IPv6 Traffic Filtering

**CPE** 

Router

Security Equipment

**DHCPv6 Server Privacy Issues** 

# **Security Tools**



| Туре                       | Can be used for                              | Examples                                |  |
|----------------------------|----------------------------------------------|-----------------------------------------|--|
|                            | Assessing IPv6 security                      | Scapy, nmap,                            |  |
| Packet                     | Testing implementations                      |                                         |  |
| Generators                 | Learning about protocols                     | Ostinato, TRex                          |  |
|                            | Proof of concept of attacks/protocols        |                                         |  |
|                            | Understanding attacks and security measures  |                                         |  |
| Packet Sniffers/ Analyzers | Learning about protocols and implementations | tcpdump, Scapy,<br>Wireshark, termshark |  |
| Analyzers                  | Troubleshooting                              |                                         |  |
|                            | Assessing IPv6 security                      | THC-IPV6, The IPv6<br>Toolkit, Ettercap |  |
| Specialised                | Learning about protocols and implementations |                                         |  |
| Toolkits                   | Proof of concept of attacks/protocols        |                                         |  |
|                            | Learn about new attacks                      |                                         |  |
| Scanners                   | Finding devices and information              | nman OnonVAS                            |  |
| Scanners                   | Proactively protect against vulnerabilities  | nmap, OpenVAS                           |  |
| IDS/IPS                    | Understanding attacks and security measures  |                                         |  |
|                            | Learning about protocols and implementations | Snort, Suricata, Zeek                   |  |
|                            | Assessing IPv6 security                      |                                         |  |
|                            | Learn about new attacks                      |                                         |  |

# **IPv6 Security Statements**





#### Reason:

Networks only designed and configured for IPv4

### Reality:

- IPv6 available in many hosts, servers, and devices
- Unwanted IPv6 traffic. Protect your network



- In IPv4-only infrastructure expect dual-stack hosts:
  - VPNs or tunnels
  - Undesired local IPv6 traffic
  - Automatic Transition Mechanisms
  - Problems with rogue RAs



## **Dual-stack**



| Bigger attack surface                  | Protect IPv6 at the same level as IPv4 |
|----------------------------------------|----------------------------------------|
| GUA Addresses                          | Filter end-to-end IPv6 properly        |
| Use one IP version to attack the other | Don't trust "IPv4-only"                |

# **IPv6 Security Statements**



1 2 3 4 5 6 7 8

- It is not possible to secure an IPv6 network
- Lack of resources and features

#### Reason:

- Considering IPv6 completely different than IPv4
- Think there are no BCPs, resources or features

### Reality:

- Use IP independent security policies
- There are BCPs, resources and features

### IPv6 vs IPv4



- IPv6 quite similar to IPv4, many reusable practices
- IPv6 security compared with IPv4:

No changes with IPv6

**Changes with IPv6** 

**New IPv6 issues** 

# **Security Tools**



| Type                       | Can be used for                              | Examples                                |  |
|----------------------------|----------------------------------------------|-----------------------------------------|--|
|                            | Assessing IPv6 security                      | Scapy, nmap,                            |  |
| Packet                     | Testing implementations                      |                                         |  |
| Generators                 | Learning about protocols                     | Ostinato, TRex                          |  |
|                            | Proof of concept of attacks/protocols        |                                         |  |
|                            | Understanding attacks and security measures  |                                         |  |
| Packet Sniffers/ Analyzers | Learning about protocols and implementations | tcpdump, Scapy,<br>Wireshark, termshark |  |
| Analyzers                  | Troubleshooting                              |                                         |  |
|                            | Assessing IPv6 security                      | THC-IPV6, The IPv6<br>Toolkit, Ettercap |  |
| Specialised                | Learning about protocols and implementations |                                         |  |
| Toolkits                   | Proof of concept of attacks/protocols        |                                         |  |
|                            | Learn about new attacks                      |                                         |  |
| Scannors                   | Finding devices and information              | nman OnonVAS                            |  |
| Scanners                   | Proactively protect against vulnerabilities  | nmap, OpenVAS                           |  |
| IDS/IPS                    | Understanding attacks and security measures  |                                         |  |
|                            | Learning about protocols and implementations | Chart Curianta Zook                     |  |
|                            | Assessing IPv6 security                      | Snort, Suricata, Zeek                   |  |
|                            | Learn about new attacks                      |                                         |  |

# **Rogue RA Solutions**



Link Monitoring

SEND

MANUAL CONFIGURATION

+ Disable Autoconfig

Host Packet Filtering

Router Preference Option [RFC4191]

ACLs on Switches

RA Snooping on Switches (RA GUARD)



# **First Hop Security**



- Security implemented on switches
- There is a number of techniques available:
  - RA-GUARD
  - IPv6 Snooping (*ND inspection + DHCPv6 Snooping*)
  - IPv6 Source / Prefix Guard
  - IPv6 Destination Guard (or ND Resolution rate limiter)
  - MLD Snooping
  - DHCPv6 Guard



# **Routing Protocols Authentication**



|        | Authentication Options                                                        | Comments                                                                                        |
|--------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| RIPng  | <ul><li>No authentication</li><li>IPsec (general recommendation)</li></ul>    | <ul> <li>RIPv2-like MD5 no longer available</li> <li>IPSec not available in practice</li> </ul> |
| OSPFv3 | <ul><li>IPsec [RFC4552]</li><li>Authentication Trailer [RFC7166]</li></ul>    | <ul> <li>ESP or AH. Manual keys</li> <li>Hash of OSPFv3 values. Shared key</li> </ul>           |
| IS-IS  | <ul><li>HMAC-MD5 [RFC5304]</li><li>HMAC-SHA [RFC5310]</li></ul>               | <ul> <li>MD5 not recommended</li> <li>Many SHA, or any other hash</li> </ul>                    |
| MBGP   | <ul><li>TCP MD5 Signature Option [RFC2385]</li><li>TCP-AO [RFC5925]</li></ul> | <ul> <li>Protects TCP. Available. Obsoleted</li> <li>Protects TCP. Recommended</li> </ul>       |



# **Securing Routing Updates**



- IPsec is a general solution for IPv6 communication
  - In practice not easy to use

- OSPFv3 specifically states [RFC4552]:
  - 1. ESP must be used
  - 2. Manual Keying

Other protocols: No options available



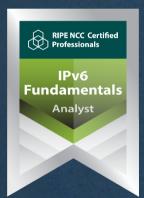
### **Conclusions**



Security options available for IPv6 routing protocols

- Try to use them:
  - Depending on the protocol you use
  - At least at the same level as IPv4



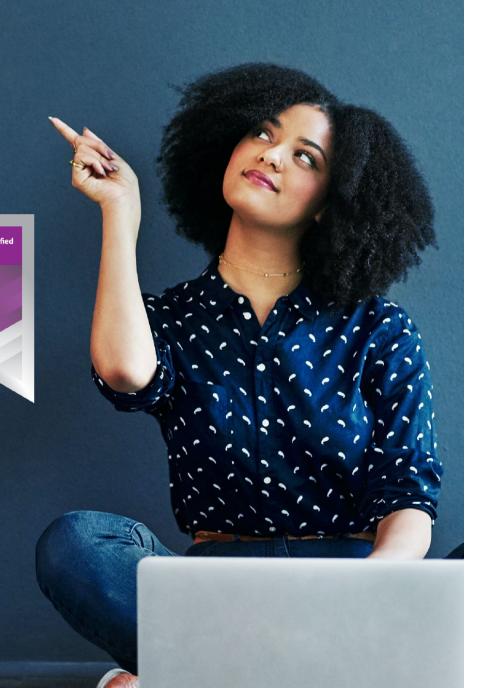

**Learn something new today!** 

academy.ripe.net





# RIPE NCC Certified Professionals










https://getcertified.ripe.net/



