
Getting 200+ Mpps from a COTS server

Hrvoje Habjanić
Architect & Co-Founder



About Author

• Graduated from ETF in 1996 (now known as FER)

• Worked 17 years in Hrvatski Telekom

• Last 7 years in 5x9 Networks

• 20+ years developer experience

• 10+ years network experience

• 10+ years of database administration

• Project lead for numerous projects

Getting 200+ Mpps 2



What is BNG

• Broadband Network Gateway

• Terminates PPPoE/IPoE user sessions

• Provides L3 connectivity to the Internet

• Enforces per user specific QoS profile and ACLs

• Responsible for AAA, LI, etc.

Getting 200+ Mpps 3



5x9 vBNG

• Virtualized CUPS system

• But, with full automation built-in

• Three main components:

• Dashboard – configuration, automation, GUI, API

• Controller – Radius, IP allocation, routing, …

• Forwarder – PPPoE/IPoE termination, QoS, ACL, etc.

• Build for scalability and flexibility

• Relies on SR-IOV and Intel DPDK accelerations

Getting 200+ Mpps 4



SR-IOV

• Single Root Input Output Virtualization

• Mechanism which present virtualized physical device directly 
to user-space application

• Mainly used to go around host kernel and its drivers

• Not supported by all hardware

Getting 200+ Mpps 5



Intel DPDK

• Data Plane Development Kit

• A set of libraries, used to directly access network device 
skipping guest kernel and its drivers

• Works in “pull” mode

• CPU constantly checks network device

• Causes 100% load on CPU

• Network card must be supported by DPDK

Getting 200+ Mpps 6

APP



The “Small VM” Concept

• Initial concept was to make forwarder instance as small as possible

• 4 vCPUs and 4 GB of memory per instance

• Automated horizontal scaling approach used

• Pros

• Optimal resource utilization 

• Each instance can have unique configuration 

• Easy to find virtual resources to start instance 

• Cons

• Large number of instances

Getting 200+ Mpps 7



Initial Performance

• 2x Intel Xeon Gold Gen2 CPU with 18 cores 

• 16 Forwarders 

• 40 Mpps no hQoS

• 160Gbps for 500B packet size

• 26 Mpps using hQoS

• 100Gbps for 500B packet size

• Intel reference document claims 100 Mpps per CPU

• Newer hardware, simple in-out packet forwarding applications

• But, still significant performance difference

Getting 200+ Mpps 8



Quick Performance Wins

• Move to newer hardware

• Optimize application for new HW

• Initial 30% performance gain

• In-depth Intel DPDK tuning 

• Significant time spent to get deep understanding of underlaying hardware

• CPU options, PCIe communication, BIOS options, network cards tweaks

• Additional 30% performance gain

• Required significant time to the change-testing cycle

• Each change is tested to verify performance impact

Getting 200+ Mpps 9



Painful Deep Dive Into the Code

• Intel vTune application

• Used for runtime in-depth code analysis using CPU internals

• Provides detailed performance insights for the code

• Executed many code analysis using Intel vTune application

• Unfortunately, monitoring performance influences the performance itself

• Identified “hot spots” in code (significant CPU wait)

• Rewrite code to avoid waits (reorder instructions)

• Rewrite loops to use multiple execution units

• Reduce code – force compiler optimizations

• Additional 20% performance gain

Getting 200+ Mpps 10



Moment of Revelation

• In the end, main cause was CPU cache misses and waits

• High count of memory object used a lot of CPU cache memory

• CPU ended constantly pulling and pushing data from main memory

• Memory data changes caused cache stalls

• Every change needs to be flushed back to main memory

• Memory page (block) is 4k bytes!

• Cache alignment was not optimal

• CPU reads a “cache line” (in most cases 64 bytes)

• Single data object must be fitted in cache line

Getting 200+ Mpps 11



Post Revelation Actions

• Major code rewrite

• Separate read and write data sections

• Separate frequently and occasionally used data structures

• Identification of additional PCIe bus bottleneck

• Addressed by grouping and carefully scheduling PCIe transactions (DMA)

• Introduction of more advanced hashing algorithms

• Significantly reduced lookup cycles (to just 1)

• Significantly reduced in-memory routing table footprint (90% reduction)

• Recognition of “Small VM” concept as inefficient

• The same information is stored multiple times in the cache

• Routing tables, interface tables, etc

Getting 200+ Mpps 12



The “Big VM” Concept

• Combine multiple small VMs to avoid in cache data multiplication 

• Single VM utilizes the entire NUMA resources and all available CPU

• QoS mechanism and route lookup improvements 

• At last targeted 200 Mpps!

• Now it became clear why other VNF vendors are using similar design 😉

• Rely on built-in full automation for deep network distribution

• Appliance (Central Office)

• One VM (Edge Cloud)

• OLT integrated (Access Node)

Getting 200+ Mpps 13



Lessons Learned

• Always use latest hardware

• Intel Xeon Gold Gen4 CPU with 32 cores each

• Intel and Mellanox 100GE network cards

• Embrace the change, (re)use what is good

• Switch to “Big VM” concept

• Use “Small VM” concept where it fits best

• Perfect for Edge Cloud deployment (One VM flavor)

• Continuous optimization is a must

• What gets measured gets improved

• Curiosity, learning, mindset and attitude are the key

Getting 200+ Mpps 14



Thanks for attention

Q&A

Getting 200+ Mpps 15


	Slide 1
	Slide 2: About Author
	Slide 3: What is BNG
	Slide 4: 5x9 vBNG
	Slide 5: SR-IOV
	Slide 6: Intel DPDK
	Slide 7: The “Small VM” Concept
	Slide 8: Initial Performance
	Slide 9: Quick Performance Wins
	Slide 10: Painful Deep Dive Into the Code
	Slide 11: Moment of Revelation
	Slide 12: Post Revelation Actions
	Slide 13: The “Big VM” Concept
	Slide 14: Lessons Learned
	Slide 15

