Overlay tehnologije u DC okruženju

Goran Combaj Principal engineer Combis d.o.o.

About me

- Network engineer for 15+ years
- 10+ years developer experience
- 10 years in banking sector
- 5+ years in Combis
 - Started with Routing & Switching
 - Last 5 years working on data center networking, servers, load balancers

Challenges of Traditional Data Center Networking

- Limited scalability
- Complexity
- Limited Agility
- Spanning tree
 - high convergence time
 - unused (blocked) links
- Suboptimal Forwarding
 - Path defined by root switch or FHRP Active

Overlay Technologies in DC

- Why:
- Efficient (HW) resource utilization
 - Flexible grow and shrink of network
 - Multi-Tenant support
 - Security and Isolation
- How
 - Virtual network on top of physical
 - Frame in IP encapsulation

Advantages of Overlay Networks

- Scalability
- Flexibility
- Agility
- Workload Mobility
- Simplified Management
- Isolation and segmentation
 - Enhanced security
- Support for Hybrid and Multi-Cloud Deployments

ois.hr

Common Overlay Protocols

Control planeBGP EVPN

Data Plane

- VXLAN
- Geneve
- NVGRE

VXLAN: Enabling Scalable Network Virtualization

Server A

- Scalable
- Encapsulation
 - Frame in UDP
- Flexible
- Supports Multi-Tenancy
- Supports Workload Mobility
- Security using segmentation and isolation
- Cloud connectivity

Geneve: Flexibility and Extensibility in Overlay Networking

- Scalable
- Encapsulation
 - Frame in UDP
- Flexible (even more than VXLAN)
- Header Flexibility
 - Variable header length
 - Optional Fields, TLV
- Enhanced Security
 - Built-in encryption
- Multi-Tenancy support

VTEP A

BGP EVPN Control Plane

- Control plane learning of L2 & L3
- Scalable multi-tenant overlay networks
- Integrated bridging and routing
- ARP suppresion
- Optimal forwarding for E-W and N-S traffic
- Anycast gateway function

[we create together]

Applications and Use Cases of Overlay Technologies **EVPN Multi-Site overlay**

- Active/Active data centers
- Network extension to cloud • Applications
- Traffic Segmentation and Isolation •
- Scalable And Flexible Network Architectures
 - Spine and Leaf (Clos)
- Multi-tenant infrastructure
- Deliver services across the entire fabric in minutes

Applications 101-200 Applications 201-300

Considerations for Implementing Overlay Technologies

- Vendor Support and Ecosystem
 - Risk of Vendor lock-in
- Multi-vendor overlay
 - Looks good on paper, in real world a challenge
- Think about future expansions
 - Design the physical network to be easily expanded
 - Clos (Spine and Leaf)
- Performance

combis.hi

- Latency & throughput
- Anycast gateway

Challenges and Limitations of Overlay Technologies

- Complexity of configuration
 - Depending on number of node
 - Central controllers
- Performance Overhead
- Limited Visibility into payload
- Underlying Network requirements
- Scalability issues
 - Each hardware node(switch) has its limits (memory, #ports)
 - Multicast for BuM traffic in POD/Site

Best Practices for Deploying

- Evaluate Vendor Solutions and Standards
- Build topology for scalability and flexibility
 - Clos (Spine and Leaf)
- Use tested and supported (by vendors) protocols in production and play with new ones in the Lab

Thank you!

Questions?

